Maximal Thurston-bennequin Number of Two-bridge Links
نویسنده
چکیده
We compute the maximal Thurston-Bennequin number for a Legendrian two-bridge knot or oriented two-bridge link in standard contact R, by showing that the upper bound given by the Kauffman polynomial is sharp. As an application, we present a table of maximal Thurston-Bennequin numbers for prime knots with nine or fewer crossings.
منابع مشابه
Legendrian Framings for Two-bridge Links
We define the Thurston-Bennequin polytope of a twocomponent link as the convex hull of all pairs of integers that arise as framings of a Legendrian representative. The main result of this paper is a description of the Thurston-Bennequin polytope for two-bridge links. As an application, we construct non-quasipositive surfaces in R all whose sub-annuli are quasipositive.
متن کاملMaximal Thurston–bennequin Number of +adequate Links
The class of +adequate links contains both alternating and positive links. Generalizing results of Tanaka (for the positive case) and Ng (for the alternating case), we construct fronts of an arbitrary +adequate link A so that the diagram has a ruling; therefore its Thurston–Bennequin number is maximal among Legendrian representatives of A. We derive consequences for the Kauffman polynomial and ...
متن کاملOn Arc Index and Maximal Thurston–bennequin Number
We discuss the relation between arc index, maximal Thurston– Bennequin number, and Khovanov homology for knots. As a consequence, we calculate the arc index and maximal Thurston–Bennequin number for all knots with at most 11 crossings. For some of these knots, the calculation requires a consideration of cables which also allows us to compute the maximal self-linking number for all knots with at...
متن کاملClassification of Legendrian Knots and Links
The aim of this paper is to use computer program to generate and classify Legendrian knots and links. Modifying the algorithm in [11], we write a program in Java to generate all grid diagrams of up to size 10. Since classification of Legendrian links up to Legendrian isotopy is equivalent to grid diagrams modulo a set of Cromwell moves including translation, commutation and X:NE,X:SW (de)stabil...
متن کاملA Legendrian Thurston–bennequin Bound from Khovanov Homology
We establish an upper bound for the Thurston–Bennequin number of a Legendrian link using the Khovanov homology of the underlying topological link. This bound is sharp in particular for all alternating links, and knots with nine or fewer crossings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001